35 research outputs found

    Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs

    Full text link
    © 2018 Elsevier Ltd During recent years, with the advent of restructuring in power systems as well as the increase of electricity demand and global fuel energy prices, challenges related to implementing demand response programs (DRPs) have gained remarkable attention of independent system operators (ISOs) and customers, aiming at the improvement of attributes of the load curve and reduction of energy consumption as well as benefiting customers. In this paper, different types of DRPs are modeled based on price elasticity of the demand and the concept of customer benefit. Besides, the impact of implementing DRPs on the operation of grid-connected microgrid (MG) is analyzed. Moreover, several scenarios are presented in order to model uncertainties interfering MG operations including failure of generation units and random outages of transmission lines and upstream line, error in load demand forecasting, uncertainty in production of renewable energies (wind and solar) based distributed generation units, and the possibility that customers do not respond to scheduled interruptions. Simulations are conducted for two principal categories of DRP including incentive-based programs and time-based programs on an 11-bus MG over a 24-h period and also a 14-bus MG over a period of 336 h (two weeks). Simulation results indicate the effects of DRPs on total operation costs, customer's benefit, and load curve as well as determining optimal use of energy resources in the MG operation. In this regard, prioritizing of DRPs on the MG operation is required

    A novel reliability oriented bi-objective unit commitment problem

    Full text link
    © 2017 IEEE. This paper presents a new solution to unit commitment for single-objective and multi-objective frameworks. In the first step, the total expected energy not supplied (TEENS) is proposed as a separate reliability objective function and at the next step, the multi-objective Pareto front strategy is implemented to simultaneously optimize the cost and reliability objective functions. Additionally, an integer based codification of initial solutions is added to reduce the dimension of ON/OFF status variables and also to eliminate the negative influence of penalty factor. The modified invasive weed optimization (MIWO) algorithm is also developed to optimally solve the proposed problem. The obtained solutions are compared with results in the literature which confirms the applicability and superiority of the proposed algorithm for a 10-unit system and 24-hour scheduling horizon

    A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data

    Full text link
    © 2017 Elsevier Ltd Nowadays, due to some environmental restrictions and decrease of fossil fuel sources, renewable energy sources and specifically wind power plants have a major part of energy generation in the industrial countries. To this end, the accurate forecasting of wind power is considered as an important and influential factor for the management and planning of power systems. In this paper, a novel intelligent method is proposed to provide an accurate forecast of the medium-term and long-term wind power by using the uncertain data from an online supervisory control and data acquisition (SCADA) system and the numerical weather prediction (NWP). This new method is based on the particle swarm optimization (PSO) algorithm and applied to train the Type-2 fuzzy neural network (T2FNN) which is called T2FNN-PSO. The presented method combines both of fuzzy system's expert knowledge and the neural network's learning capability for accurate forecasting of the wind power. In addition, the T2FNN-PSO can appropriately handle the uncertainties associated with the measured parameters from SCADA system, the numerical weather prediction and measuring tools. The proposed method is applied on a case study of a real wind farm. The obtained simulation results validate effectiveness and applicability of the proposed method for a practical solution to an accurate wind power forecasting in a power system control center

    A review on economic and technical operation of active distribution systems

    Full text link
    © 2019 Elsevier Ltd Along with the advent of restructuring in power systems, considerable integration of renewable energy resources has motivated the transition of traditional distribution networks (DNs) toward new active ones. In the meanwhile, rapid technology advances have provided great potentials for future bulk utilization of generation units as well as the energy storage (ES) systems in the distribution section. This paper aims to present a comprehensive review of recent advancements in the operation of active distribution systems (ADSs) from the viewpoint of operational time-hierarchy. To be more specific, this time-hierarchy consists of two stages, and at the first stage of this time-hierarchy, four major economic factors, by which the operation of traditional passive DNs is evolved to new active DNs, are described. Then the second stage of the time-hierarchy refers to technical management and power quality correction of ADSs in terms of static, dynamic and transient periods. In the end, some required modeling and control developments for the optimal operation of ADSs are discussed. As opposed to previous review papers, potential applications of devices in the ADS are investigated considering their operational time-intervals. Since some of the compensating devices, storage units and generating sources may have different applications regarding the time scale of their utilization, this paper considers real scenario system operations in which components of the network are firstly scheduled for the specified period ahead; then their deviations of operating status from reference points are modified during three time-intervals covering static, dynamic and transient periods

    Dynamic performance improvement of an ultra-lift Luo DC–DC converter by using a type-2 fuzzy neural controller

    Full text link
    © 2018 Due to the uncertainty associated with the structure and electrical elements of DC–DC converters and the nonlinear performance of these modules, designing an effective controller is highly complicated and also technically challenging. This paper employs a new control approach based on type-2 fuzzy neural controller (T2FNC) in order to improve the dynamic response of an ultra-lift Luo DC–DC converter under different operational conditions. The proposed controller can rapidly stabilize the output voltage of converter to expected values by tuning the converter switching duty cycle. This controller can tackle the uncertainties associated with the structure of converters, measured control signals and measuring devices. Moreover, a new intelligent method based on firefly algorithm is applied to tune the parameters of T2FNC. In order to demonstrate the effectiveness of the proposed control approach, the proposed controller is compared to PI and fuzzy controllers under different operational conditions. Results validate efficiency of proposed T2FNC

    Hybrid power plant bidding strategy including a commercial compressed air energy storage aggregator and a wind power producer

    Full text link
    © 2017 IEEE. In this paper, a commercial compressed air energy storage (CAES) aggregator equipped with a simple cycle mode operation having the ability to work like a gas turbine is coordinated with a wind power aggregator (WPA) as a hybrid power plant to participate in electricity markets. In the proposed approach, the WPA uses the CAES to tackle its stochastic input and uncertainties related to different electricity market prices, and CAES can also use WPA to manage its charging/discharging and simple cycle modes more economically. A three-stage stochastic decision-making method is used to model the mentioned optimization problem which considers three electricity markets including day-ahead, intraday and balancing markets. The problem is formulated as a mixed integer linear programming which can be solved with available commercial solvers. Also, conditional value-at-risk is added to the problem to control the financial risk of the problem and offer different operation strategies for different financials risk levels. The proposed method can provide both bidding quantity and bidding curves to be submitted to the electricity markets which is tested on a realistic case study based on a wind farm and electricity market located in Spain. The results confirm that the proposed method can provide extra profit in joint operation, have more flexibility and reduce the financial risks

    Profit-Based Unit Commitment for a GENCO Equipped with Compressed Air Energy Storage and Concentrating Solar Power Units

    Full text link
    With the advent of restructuring in the power industry, the conventional unit commitment problem in power systems, involving the minimization of operation costs in a traditional vertically integrated system structure, has been transformed to the profit-based unit commitment (PBUC) approach, whereby generation companies (GENCOs) perform scheduling of the available production units with the aim of profit maximization. Generally, a GENCO solves the PBUC problem for participation in the day-ahead market (DAM) through determining the commitment and scheduling of fossil-fuel-based units to maximize their own profit according to a set of forecasted price and load data. This study presents a methodology to achieve optimal offering curves for a price-taker GENCO owning compressed air energy storage (CAES) and concentrating solar power (CSP) units, in addition to conventional thermal power plants. Various technical and physical constraints regarding the generation units are considered in the provided model. The proposed framework is mathematically described as a mixed-integer linear programming (MILP) problem, which is solved by using commercial software packages. Meanwhile, several cases are analyzed to evaluate the impacts of CAES and CSP units on the optimal solution of the PBUC problem. The achieved results demonstrate that incorporating the CAES and CSP units into the self-scheduling problem faced by the GENCO would increase its profitability in the DAM to a great exten

    Hybrid power plant bidding strategy for voltage stability improvement, electricity market profit maximization, and congestion management

    Full text link
    This article models a hybrid power plant (HPP), including a compressed air energy storage (CAES) aggregator with a wind power aggregator (WPA) considering network constraints. Three objective functions are considered including electricity market profit maximization, congestion management, and voltage stability improvement. In order to accurately model the WPA, pitch control curtailment wind power levels are also added to the wind power generator models. To optimize all the mentioned objective functions, a multi-objective Pareto front solution strategy is used. Finally, a fuzzy method is used to find the best compromise solution. The proposed approach is tested on a realistic case study based on an electricity market and wind farm located in Spain, and IEEE 57-bus test system is used to evaluate the network constraint effects on the HPP scheduling for different objective functions

    An ICA based approach for solving profit based unit commitment problem market

    Full text link
    With the advent of paralleling and implementation of restructuring in the power market, some routine rules and patterns of traditional market should be accomplished in a way different from the past. To this end, the unit commitment (UC) scheduling that has once been aimed at minimizing operating costs in an integrated power market, is metamorphosed to profit based unit commitment (PBUC) by adopting a new schema, in which generation companies (GENCOs) have a common tendency to maximize their own profit. In this paper, a novel optimization technique called imperialist competitive algorithm (ICA) as well as an improved version of this evolutionary algorithm are employed for solving the PBUC problem. Moreover, traditional binary approach of coding of initial solutions is replaced with an improved integer based coding method in order to reduce computational complexity and subsequently ameliorate convergence procedure of the proposed method. Then, a sub-ICA algorithm is proposed to obtain optimal generation power of thermal units. Simulation results validate effectiveness and applicability of the proposed method on two scenarios: (a) a set of unimodal and multimodal standard benchmark functions, (b) two GENCOs consist of 10 and 100 generating units
    corecore